Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Lightning is the main precursor of wildfires in Arizona, New Mexico, and Florida during the fire season. Forecasting the occurrence of Lightning-Ignited Wildfires (LIW) is an essential tool to reduce their impacts on the environment and society. Long-Continuing-Current (LCC) lightning is proposed to be the main precursor of LIW. The long-lasting continuing current phase of LCC lightning is that which is more likely to ignite vegetation. We investigated the meteorological conditions and vegetation type associated with LIW and LCC lightning flashes in Arizona, New Mexico, and Florida. We analyzed LIW between 2009 and 2013 and LCC lightning between 1998 and 2014 and combined lightning and meteorological data from a reanalysis data set. According to our results, LIW tend to occur during dry thunderstorms with a high surface temperature and a high temperature gradient between the 700 hPa and the 450 hPa vertical levels for high-based clouds. In turn, we obtained a high lightning-ignition efficiency in coniferous forests, such as the ponderosa pine in Arizona and New Mexico and the slash pine in Florida. We found that the meteorological conditions that favor fire ignition and spread are more significant in Florida than in Arizona and New Mexico, while the meteorological conditions that favor the occurrence of LIW in Arizona and New Mexico are closely related with the meteorological conditions that favor high lightning activity. In turn, our results indicate high atmospheric instability during the occurrence of LIW. Our findings suggest that LCC (>18 ms) lightning tends to occur in thunderstorms with high relative humidity and ice content in the clouds, and with low temperature in the entire troposphere. Additionally, a weak updraft in the lower troposphere and a strong one in the upper troposphere favor the occurrence of LCC (>18 ms) lightning. We found that the meteorological conditions that favor the occurrence of LCC (>18 ms) lightning are not necessarily the preferential meteorological conditions for LIW.

Details

Title
Meteorological Conditions Associated with Lightning Ignited Fires and Long-Continuing-Current Lightning in Arizona, New Mexico and Florida
Author
Pérez-Invernón, Francisco J 1   VIAFID ORCID Logo  ; Huntrieser, Heidi 1 ; Moris, Jose V 2   VIAFID ORCID Logo 

 Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, 51147 Weßling, Germany; [email protected] 
 Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy; [email protected] 
First page
96
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
25716255
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2706179711
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.