Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Forest disease is one of the most important factors affecting tree growth and product quality, reducing economic values of forest ecosystem goods and services. In order to prevent and control forest diseases, accurate detection in a timely manner is essential. Unmanned aerial vehicles (UAVs) are becoming an important tool for acquiring multispectral imagery, but have not been extensively used for detection of forest diseases. This research project selected a eucalyptus forest as a case study to explore the performance of leaf disease detection using high spatial resolution multispectral imagery that had been acquired by UAVs. The key variables sensitive to eucalyptus leaf diseases, including spectral bands and vegetation indices, were identified by using a mutual information–based feature selection method, then distinguishing disease levels using random forest and spectral angle mapper approaches. The results show that green, red edge, and near-infrared wavelengths, nitrogen reflectance index, and greenness index are sensitive to forest diseases. The random forest classifier, based on a combination of sensitive spectral bands (green, red edge, and near-infrared wavelengths) and a nitrogen reflectance index, provided the best differentiation results for healthy and three disease severity levels (mild, moderate, and severe) with overall accuracy of 90.1% and kappa coefficient of 0.87. This research provides a new way to detect eucalyptus leaf diseases, and the proposed method may be suitable for other forest types.

Details

Title
Detection of Eucalyptus Leaf Disease with UAV Multispectral Imagery
Author
Liao, Kuo 1 ; Yang, Fan 2 ; Dang, Haofei 1 ; Wu, Yunzhong 3 ; Luo, Kunfa 3 ; Li, Guiying 2   VIAFID ORCID Logo 

 Wuyi Mountain National Meteorological Observation Station, Wuyishan 354200, China 
 Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University, Fuzhou 350007, China; Institute of Geography, Fujian Normal University, Fuzhou 350007, China 
 Yuanling State Forestry Farm, Yunxiao County, Zhangzhou 363300, China 
First page
1322
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
19994907
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2706197068
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.