Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Resistance to Immune Checkpoint Blockade (ICB) constitutes the current limiting factor for the optimal implementation of this novel therapy, which otherwise demonstrates durable responses with acceptable toxicity scores. This limitation is exacerbated by a lack of robust biomarkers. In this study, we have dissected the basal TME composition at the gene expression and cellular levels that predict response to Nivolumab and prognosis. BCR, TCR and HLA profiling were employed for further characterization of the molecular variables associated with response. The findings were validated using a single-cell RNA-seq data of metastatic melanoma patients treated with ICB, and by multispectral immunofluorescence. Finally, machine learning was employed to construct a prediction algorithm that was validated across eight metastatic melanoma cohorts treated with ICB. Using this strategy, we have unmasked a major role played by basal intratumoral Plasma cells expressing high levels of IGKC in efficacy. IGKC, differentially expressed in good responders, was also identified within the Top response-related BCR clonotypes, together with IGK variants. These results were validated at gene, cellular and protein levels; CD138+ Plasma-like and Plasma cells were more abundant in good responders and correlated with the same RNA-seq-defined fraction. Finally, we generated a 15-gene prediction model that outperformed the current reference score in eight ICB-treated metastatic melanoma cohorts. The evidenced major contribution of basal intratumoral IGKC and Plasma cells in good response and outcome in ICB in metastatic melanoma is a groundbreaking finding in the field beyond the role of T lymphocytes.

Details

Title
High IGKC-Expressing Intratumoral Plasma Cells Predict Response to Immune Checkpoint Blockade
Author
Onieva, Juan Luis 1   VIAFID ORCID Logo  ; Xiao, Qingyang 2 ; Miguel-Ángel Berciano-Guerrero 3   VIAFID ORCID Logo  ; Laborda-Illanes, Aurora 1 ; de Andrea, Carlos 4 ; Chaves, Patricia 5   VIAFID ORCID Logo  ; Piñeiro, Pilar 5 ; Garrido-Aranda, Alicia 5 ; Gallego, Elena 6 ; Sojo, Belén 5 ; Gálvez, Laura 3   VIAFID ORCID Logo  ; Chica-Parrado, Rosario 5 ; Prieto, Daniel 6   VIAFID ORCID Logo  ; Pérez-Ruiz, Elisabeth 3   VIAFID ORCID Logo  ; Farngren, Angela 7 ; Lozano, María José 8 ; Álvarez, Martina 5   VIAFID ORCID Logo  ; Jiménez, Pedro 3 ; Sánchez-Muñoz, Alfonso 3 ; Oliver, Javier 5   VIAFID ORCID Logo  ; Cobo, Manuel 3   VIAFID ORCID Logo  ; Alba, Emilio 5 ; Barragán, Isabel 9 

 Medical Oncology Intercenter Unit, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina–IBIMA Plataforma Bionand, Regional and Virgen de la Victoria University Hospitals, 29010 Malaga, Spain; Cancer Molecular Biology Laboratory (LBMC), Translational Research in Cancer Immunotherapy Group, Health and Medical Research Centre (CIMES), University of Malaga (UMA), Marques de Beccaria 3, 29010 Malaga, Spain; Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina–IBIMA Plataforma Bionand, 29010 Malaga, Spain; Facultad de Medicina, Campus de Teatinos s/n, Universidad de Málaga, 29071 Malaga, Spain 
 Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden; Group of Pharmacoepigenetics, Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden 
 Medical Oncology Intercenter Unit, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina–IBIMA Plataforma Bionand, Regional and Virgen de la Victoria University Hospitals, 29010 Malaga, Spain; Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina–IBIMA Plataforma Bionand, 29010 Malaga, Spain 
 Department of Anatomy, Physiology and Pathology, University of Navarra, 31008 Pamplona, Spain; Department of Anatomy and Pathology, University of Navarra, 31008 Pamplona, Spain 
 Medical Oncology Intercenter Unit, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina–IBIMA Plataforma Bionand, Regional and Virgen de la Victoria University Hospitals, 29010 Malaga, Spain; Cancer Molecular Biology Laboratory (LBMC), Translational Research in Cancer Immunotherapy Group, Health and Medical Research Centre (CIMES), University of Malaga (UMA), Marques de Beccaria 3, 29010 Malaga, Spain; Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina–IBIMA Plataforma Bionand, 29010 Malaga, Spain 
 Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina–IBIMA Plataforma Bionand, 29010 Malaga, Spain; Department of Pathology, Clinical University Hospital, Campus de Teatinos, 29010 Malaga, Spain 
 Group of Pharmacoepigenetics, Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden 
 Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina–IBIMA Plataforma Bionand, 29010 Malaga, Spain; Department of Pathology, University of Malaga (UMA), 29010 Malaga, Spain 
 Medical Oncology Intercenter Unit, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina–IBIMA Plataforma Bionand, Regional and Virgen de la Victoria University Hospitals, 29010 Malaga, Spain; Cancer Molecular Biology Laboratory (LBMC), Translational Research in Cancer Immunotherapy Group, Health and Medical Research Centre (CIMES), University of Malaga (UMA), Marques de Beccaria 3, 29010 Malaga, Spain; Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina–IBIMA Plataforma Bionand, 29010 Malaga, Spain; Group of Pharmacoepigenetics, Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden 
First page
9124
Publication year
2022
Publication date
2022
Publisher
MDPI AG
ISSN
16616596
e-ISSN
14220067
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2706228167
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.