Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Two mononuclear RuIII complexes of formula trans-[RuCl4(Hgua)(dmso)]·2H2O (1) and trans-[RuCl4(Hgua)(gua)]·3H2O (2) [Hgua = protonated guanine (gua), dmso = dimethyl sulfoxide] have been synthesized and characterized magnetostructurally. 1 and 2 crystallize in the monoclinic system with space groups P21/n and Pc, respectively. Each RuIII ion in 1 and 2 is bonded to four chloride ions and one (1) or two (2) nitrogen atoms from guanine molecules and one sulfur atom (1) of a dmso solvent molecule, generating axially compressed octahedral geometries in both cases. In their crystal packing, the RuIII complexes are connected through an extended network of N-H⋯Cl hydrogen bonds and π⋯Cl intermolecular interactions, forming novel supramolecular structures of this paramagnetic 4d ion. Variable-temperature dc magnetic susceptibility data were obtained from polycrystalline samples of 1 and 2 and their plots show a different magnetic behavior. While 1 is a ferromagnetic compound at low temperature, 2 exhibits a behavior of magnetically isolated mononuclear RuIII complexes with S = 1/2. The study on ac magnetic susceptibility data reveal slow relaxation of the magnetization, when external dc fields are applied, only for 2. These results highlight the presence of field-induced single-ion magnet (SIM) behavior for this mononuclear guanine-based RuIII complex.

Details

Title
Ferromagnetic Coupling and Single-Ion Magnet Phenomenon in Mononuclear Ruthenium(III) Complexes Based on Guanine Nucleobase
Author
Orts-Arroyo, Marta; Moliner, Nicolás; Lloret, Francesc; Martínez-Lillo, José  VIAFID ORCID Logo 
First page
93
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
23127481
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2706244046
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.