Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The rapid wear of conical picks used in rock cutting heads in the mining industry has a significant economic impact in cost effectiveness for a given mineral extraction business. Any mining facility could benefit from decreasing the cost along with a substantial durability increase of a conical pick; thus, the hardfacing method of production and regeneration should be taken into account. In order to automatize the regeneration, the wear rate assessment is necessary. This paper presents a methodology used to create a 3D photogrammetric model of most of the commercially available tangential-rotary cutters in their before and after abrasive exploitation state. An experiment of three factors on two levels is carried out to indicate the proper setup of the scanning rig to obtain plausible results. Those factors are: light level, presence of polarizing filter and the distance from the scanned object. The 3D scan of the worn out specimen is compared to the master model via algorithm developed by the authors. This approach provides more detailed information about the wear mechanism and can help either in roadheader cutting head diagnostics or to develop a strategy and optimize the toolpath for the numerically controlled hardfacing machine.

Details

Title
The Volumetric Wear Assessment of a Mining Conical Pick Using the Photogrammetric Approach
Author
Pawlik, Jan  VIAFID ORCID Logo  ; Wróblewska-Pawlik, Aleksandra; Bembenek, Michał  VIAFID ORCID Logo 
First page
5783
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2706261364
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.