Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

We use the method of field decomposition, a widely used technique in relativistic magnetohydrodynamics, to study the small velocity approximation (SVA) of the Lorentz transformation in Maxwell equations for slowly moving media. The “deformed” Maxwell equations derived using SVA in the lab frame can be put into the conventional form of Maxwell equations in the medium’s co-moving frame. Our results show that the Lorentz transformation in the SVA of up to O(v/c) (v is the speed of the medium and c is the speed of light in a vacuum) is essential to derive these equations: the time and charge density must also change when transforming to a different frame, even in the SVA, not just the position and current density, as in the Galilean transformation. This marks the essential difference between the Lorentz transformation and the Galilean one. We show that the integral forms of Faraday and Ampere equations for slowly moving surfaces are consistent with Maxwell equations. We also present Faraday equation in the covariant integral form, in which the electromotive force can be defined as a Lorentz scalar that is independent of the observer’s frame. No evidence exists to support an extension or modification of Maxwell equations.

Details

Title
Lorentz Transformation in Maxwell Equations for Slowly Moving Media
Author
Xin-Li, Sheng  VIAFID ORCID Logo  ; Yang, Li; Shi, Pu  VIAFID ORCID Logo  ; Wang, Qun  VIAFID ORCID Logo 
First page
1641
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20738994
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2706281574
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.