Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In brain–computer interfaces (BCIs), it is crucial to process brain signals to improve the accuracy of the classification of motor movements. Machine learning (ML) algorithms such as artificial neural networks (ANNs), linear discriminant analysis (LDA), decision tree (D.T.), K-nearest neighbor (KNN), naive Bayes (N.B.), and support vector machine (SVM) have made significant progress in classification issues. This paper aims to present a signal processing analysis of electroencephalographic (EEG) signals among different feature extraction techniques to train selected classification algorithms to classify signals related to motor movements. The motor movements considered are related to the left hand, right hand, both fists, feet, and relaxation, making this a multiclass problem. In this study, nine ML algorithms were trained with a dataset created by the feature extraction of EEG signals.The EEG signals of 30 Physionet subjects were used to create a dataset related to movement. We used electrodes C3, C1, CZ, C2, and C4 according to the standard 10-10 placement. Then, we extracted the epochs of the EEG signals and applied tone, amplitude levels, and statistical techniques to obtain the set of features. LabVIEW™2015 version custom applications were used for reading the EEG signals; for channel selection, noise filtering, band selection, and feature extraction operations; and for creating the dataset. MATLAB 2021a was used for training, testing, and evaluating the performance metrics of the ML algorithms. In this study, the model of Medium-ANN achieved the best performance, with an AUC average of 0.9998, Cohen’s Kappa coefficient of 0.9552, a Matthews correlation coefficient of 0.9819, and a loss of 0.0147. These findings suggest the applicability of our approach to different scenarios, such as implementing robotic prostheses, where the use of superficial features is an acceptable option when resources are limited, as in embedded systems or edge computing devices.

Details

Title
Evaluation of Machine Learning Algorithms for Classification of EEG Signals
Author
Ramírez-Arias, Francisco Javier 1   VIAFID ORCID Logo  ; García-Guerrero, Enrique Efren 2   VIAFID ORCID Logo  ; Tlelo-Cuautle, Esteban 3   VIAFID ORCID Logo  ; Juan Miguel Colores-Vargas 4   VIAFID ORCID Logo  ; García-Canseco, Eloisa 5   VIAFID ORCID Logo  ; López-Bonilla, Oscar Roberto 2   VIAFID ORCID Logo  ; Galindo-Aldana, Gilberto Manuel 6   VIAFID ORCID Logo  ; Inzunza-González, Everardo 2   VIAFID ORCID Logo 

 Facultad de Ingeniería, Arquitectura y Diseño, Universidad Autónoma de Baja California, Carretera Transpeninsular Ensenada-Tijuana No. 3917, Ensenada 22860, Mexico; [email protected] (F.J.R.-A.); [email protected] (E.E.G.-G.); [email protected] (O.R.L.-B.); Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Blvd. Universitario No. 1000, Valle de las Palmas, Tijuana 21500, Mexico; [email protected] 
 Facultad de Ingeniería, Arquitectura y Diseño, Universidad Autónoma de Baja California, Carretera Transpeninsular Ensenada-Tijuana No. 3917, Ensenada 22860, Mexico; [email protected] (F.J.R.-A.); [email protected] (E.E.G.-G.); [email protected] (O.R.L.-B.) 
 Departamento de Electrónica, Instituto Nacional de Astrofísica, Óptica y Electrónica, Luis Enrique Erro No. 1, Santa María Tonanzintla, Puebla 72840, Mexico; [email protected] 
 Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Blvd. Universitario No. 1000, Valle de las Palmas, Tijuana 21500, Mexico; [email protected] 
 Facultad de Ciencias, Universidad Autónoma de Baja California, Carretera Transpeninsular Ensenada-Tijuana No. 3917, Ensenada 22860, Mexico; [email protected] 
 Facultad de Ingeniería y Negocios, Guadalupe Victoria, Universidad Autónoma de Baja California, Carretera Estatal No. 3, Gutiérrez, Mexicali 21720, Mexico; [email protected] 
First page
79
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
22277080
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2706432558
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.