Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This paper discusses a novel approach to an EEG (electroencephalogram)-based driver distraction classification by using brain connectivity estimators as features. Ten healthy volunteers with more than one year of driving experience and an average age of 24.3 participated in a virtual reality environment with two conditions, a simple math problem-solving task and a lane-keeping task to mimic the distracted driving task and a non-distracted driving task, respectively. Independent component analysis (ICA) was conducted on the selected epochs of six selected components relevant to the frontal, central, parietal, occipital, left motor, and right motor areas. Granger–Geweke causality (GGC), directed transfer function (DTF), partial directed coherence (PDC), and generalized partial directed coherence (GPDC) brain connectivity estimators were used to calculate the connectivity matrixes. These connectivity matrixes were used as features to train the support vector machine (SVM) with the radial basis function (RBF) and classify the distracted and non-distracted driving tasks. GGC, DTF, PDC, and GPDC connectivity estimators yielded the classification accuracies of 82.27%, 70.02%, 86.19%, and 80.95%, respectively. Further analysis of the PDC connectivity estimator was conducted to determine the best window to differentiate between the distracted and non-distracted driving tasks. This study suggests that the PDC connectivity estimator can yield better classification accuracy for driver distractions.

Details

Title
Improving EEG-Based Driver Distraction Classification Using Brain Connectivity Estimators
Author
Perera, Dulan 1   VIAFID ORCID Logo  ; Yu-Kai, Wang 2   VIAFID ORCID Logo  ; Chin-Teng, Lin 2   VIAFID ORCID Logo  ; Nguyen, Hung 1   VIAFID ORCID Logo  ; Rifai Chai 1   VIAFID ORCID Logo 

 School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia 
 School of Computer Science, University of Technology Sydney, Ultimo, NSW 2007, Australia 
First page
6230
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2706458891
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.