It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Photothermal therapy (PTT) has attracted increasing interest as a complementary method to be used alongside conventional therapies. Despite a great number of studies in this field, only a few have explored how temperatures affect the outcome of the PTT at nanoscale. In this work, we study the necrosis/apoptosis process of cancerous cells that occurs during PTT, using a combination of local laser heating and nanoscale fluorescence thermometry techniques. The temperature distribution within a whole cell was evaluated using fluorescence lifetime imaging microscopy during laser-induced hyperthermia. For this, gold nanorods were utilized as nanoheaters. The local near-infrared laser illumination produces a temperature gradient across the cells, which is precisely measured by nanoscale thermometry. This allows one to optimize the PTT conditions by varying concentration of gold nanorods associated with cells and laser power density. During the PTT procedure, such an approach enables an accurate determination of the percentages of apoptotic and necrotic cells using 2D and 3D models. According to the performed cell experiments, the influence of temperature increase during the PTT on cell death mechanisms has been verified and determined. Our investigations can improve the understanding of the PTT mechanisms and increase its therapeutic efficiency while avoiding any side effects.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 School of Physics and Engineering, ITMO University, Lomonosova 9, 191002, St. Petersburg, Russian Federation
2 Laboratory of Renewable Energy Sources, Alferov University, Khlopina 8/3, 194021, St. Petersburg, Russian Federation
3 RM Gorbacheva Research Institute of Pediatric Oncology, Hematology and Transplantation, Pavlov University, Lva Tolstogo 6/8, 191144, St. Petersburg, Russian Federation
4 Faculty of Photonics, Center of Optical Information Technologies, ITMO University, Birzhevaya liniya 4, 199034, St. Petersburg, Russian Federation