Full Text

Turn on search term navigation

Copyright © 2022, Orhan et al. This work is published under https://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background

Microorganisms proliferating in the hospital setting cause infections with high morbidity and mortality rates. In intensive care units (ICUs), the rates of antibiotic resistance and microorganisms grown in cultures may vary by time period. Antibiotic sensitivity must be known for a correct empirical treatment approach. This study aimed to investigate the distribution and antibiotic resistance profiles of pathogenic microorganisms isolated from tracheal aspirate samples in the ICU.

Methodology

This study enrolled 100 tracheostomized patients aged one month to 18 years, regardless of gender, who were followed in the ICU of Dicle University for more than 72 hours. Medical data were retrospectively evaluated from the medical records. Care was taken to collect samples before changing antibiotics. Antibiotherapy was continued until after culture antibiogram results were obtained, or empirical antibiotic therapy was started by giving consideration to the potential source in patients with a suspected infection.

Results

An analysis of the tracheal aspirate culture samples of the patients showed that Pseudomonas aeruginosa (54%), Acinetobacter baumannii (16%), and Staphylococcus aureus (8%) were the most common pathogens. An analysis of the culture antibiogram results of the tracheal aspirate samples obtained from the entire study population showed that P. aeruginosa was 100% resistant against vancomycin, clindamycin, and teicoplanin, but highly sensitive to colistin and amikacin. A. baumannii was highly resistant to almost all antibiotics but showed no resistance against colistin. Carbapenems being frequently preferred for cases where empirical therapy should be initiated for ICU infections can be one of the reasons for a high carbapenem resistance rate in our hospital.

Conclusions

We believe that starting empirical therapy with colistin when infections caused by Pseudomonas and Acinetobacter are suspected may be an appropriate initial therapy until culture antibiogram results become available. Microbiological data are crucial for a correct empirical treatment approach. In this way, intensive antibiotic usage and subsequent high antibiotic resistance can be adequately controlled.

Details

Title
Antibiotic Susceptibility of Microorganisms Grown in Tracheal Aspirate Cultures of Pediatric Intensive Care Patients
Author
Özhan, Orhan; Yılmaz Kamil; Ayfer, Gözü Pirinççioğlu; Solmaz Murat; Karakoç Ferhat
University/institution
U.S. National Institutes of Health/National Library of Medicine
Publication year
2022
Publication date
2022
Publisher
Cureus Inc.
e-ISSN
21688184
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2708659589
Copyright
Copyright © 2022, Orhan et al. This work is published under https://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.