Abstract

Successful cholinergic-noradrenergic pharmacotherapy for obstructive sleep apnea (OSA) is thought to be due to effects at the hypoglossal motor nucleus (HMN). Clinical efficacy varies with muscarinic-receptor (MR) subtype affinities. We hypothesized that oxybutynin (cholinergic agent in successful OSA pharmacotherapy) is an effective MR antagonist at the HMN and characterized its efficacy with other antagonists. We recorded tongue muscle activity of isoflurane anesthetized rats (121 males and 60 females, 7–13 per group across 13 protocols) in response to HMN microperfusion with MR antagonists with and without: (i) eserine-induced increased endogenous acetylcholine at the HMN and (ii) muscarine. Eserine-induced increased acetylcholine decreased tongue motor activity (p < 0.001) with lesser cholinergic suppression in females versus males (p = 0.017). Motor suppression was significantly attenuated by the MR antagonists atropine, oxybutynin, and omadacycline (MR2 antagonist), each p < 0.001, with similar residual activity between agents (p ≥ 0.089) suggesting similar efficacy at the HMN. Sex differences remained with atropine and oxybutynin (p < 0.001 to 0.05) but not omadacycline (p = 0.722). Muscarine at the HMN also decreased motor activity (p < 0.001) but this was not sex-specific (p = 0.849). These findings have translational relevance to antimuscarinic agents in OSA pharmacotherapy and understanding potential sex differences in HMN suppression with increased endogenous acetylcholine related to sparing nicotinic excitation.

Details

Title
Differential pharmacological and sex-specific effects of antimuscarinic agents at the hypoglossal motor nucleus in vivo in rats
Author
Niakani, Sepehr 1 ; Liu, Hattie 1 ; Liu, Wen-Ying 1 ; Horner, Richard L. 2 

 University of Toronto, Department of Physiology, Toronto, Canada (GRID:grid.17063.33) (ISNI:0000 0001 2157 2938) 
 University of Toronto, Department of Physiology, Toronto, Canada (GRID:grid.17063.33) (ISNI:0000 0001 2157 2938); University of Toronto, Department of Medicine, Toronto, Canada (GRID:grid.17063.33) (ISNI:0000 0001 2157 2938) 
Publication year
2022
Publication date
2022
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2708890712
Copyright
© The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.