It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Van der Waals heterostructures offer great versatility to tailor unique interactions at the atomically flat interfaces between dissimilar layered materials and induce novel physical phenomena. By bringing monolayer 1 T’ WTe2, a two-dimensional quantum spin Hall insulator, and few-layer Cr2Ge2Te6, an insulating ferromagnet, into close proximity in an heterostructure, we introduce a ferromagnetic order in the former via the interfacial exchange interaction. The ferromagnetism in WTe2 manifests in the anomalous Nernst effect, anomalous Hall effect as well as anisotropic magnetoresistance effect. Using local electrodes, we identify separate transport contributions from the metallic edge and insulating bulk. When driven by an AC current, the second harmonic voltage responses closely resemble the anomalous Nernst responses to AC temperature gradient generated by nonlocal heater, which appear as nonreciprocal signals with respect to the induced magnetization orientation. Our results from different electrodes reveal spin-polarized edge states in the magnetized quantum spin Hall insulator.
Van der Waals heterostructures allow for the integration of several materials with different properties in the one heterostructure. Here, Li et al combine a quantum spin hall insulator, WTe2, with an insulating ferromagnet, Cr2Ge2Te6, in a van der Waals heterostructure, with resulting proximity-induced magnetism in the WTe2 layer leading to an anomalous Hall and Nernst effect.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details







1 University of California, Department of Physics and Astronomy, Riverside, USA (GRID:grid.266097.c) (ISNI:0000 0001 2222 1582); Southern University of Science and Technology, Department of Physics, Shenzhen, China (GRID:grid.263817.9) (ISNI:0000 0004 1773 1790)
2 University of California, Department of Physics and Astronomy, Riverside, USA (GRID:grid.266097.c) (ISNI:0000 0001 2222 1582)
3 Weizmann Institute of Science, Department of Condensed Matter Physics, Rehovot, Israel (GRID:grid.13992.30) (ISNI:0000 0004 0604 7563)
4 University of California, Department of Electrical and Computer Engineering, Riverside, USA (GRID:grid.266097.c) (ISNI:0000 0001 2222 1582)
5 Peking University, International Center for Quantum Materials, School of Physics, Beijing, China (GRID:grid.11135.37) (ISNI:0000 0001 2256 9319)
6 National Institute for Materials Science, Research Center for Functional Materials, Tsukuba, Japan (GRID:grid.21941.3f) (ISNI:0000 0001 0789 6880)
7 National Institute for Materials Science, International Center for Materials Nanoarchitectonics, Tsukuba, Japan (GRID:grid.21941.3f) (ISNI:0000 0001 0789 6880)