Full text

Turn on search term navigation

© 2022 Dietrich et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Globally, 21 percent of young women are married before their 18th birthday. Despite some progress in addressing child marriage, it remains a widespread practice, in particular in South Asia. While household predictors of child marriage have been studied extensively in the literature, the evidence base on macro-economic factors contributing to child marriage and models that predict where child marriage cases are most likely to occur remains limited. In this paper we aim to fill this gap and explore region-level indicators to predict the persistence of child marriage in four countries in South Asia, namely Bangladesh, India, Nepal and Pakistan. We apply machine learning techniques to child marriage data and develop a prediction model that relies largely on regional and local inputs such as droughts, floods, population growth and nightlight data to model the incidence of child marriages. We find that our gradient boosting model is able to identify a large proportion of the true child marriage cases and correctly classifies 77% of the true marriage cases, with a higher accuracy in Bangladesh (92% of the cases) and a lower accuracy in Nepal (70% of cases). In addition, all countries contain in their top 10 variables for classification nighttime light growth, a shock index of drought over the previous and the last two years and the regional level of education, suggesting that income shocks, regional economic activity and regional education levels play a significant role in predicting child marriage. Given the accuracy of the model to predict child marriage, our model is a valuable tool to support policy design in countries where household-level data remains limited.

Details

Title
Economic development, weather shocks and child marriage in South Asia: A machine learning approach
Author
Dietrich, Stephan  VIAFID ORCID Logo  ; Meysonnat, Aline; Rosales, Francisco; Cebotari, Victor; Gassmann, Franziska  VIAFID ORCID Logo 
First page
e0271373
Section
Research Article
Publication year
2022
Publication date
Sep 2022
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2708995791
Copyright
© 2022 Dietrich et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.