It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Prominin-1 (PROM1), also known as CD133, is expressed in hepatic progenitor cells (HPCs) and cholangiocytes of the fibrotic liver. In this study, we show that PROM1 is upregulated in the plasma membrane of fibrotic hepatocytes. Hepatocellular expression of PROM1 was also demonstrated in mice (Prom1CreER; R26TdTom) in which cells expressed TdTom under control of the Prom1 promoter. To understand the role of hepatocellular PROM1 in liver fibrosis, global and liver-specific Prom1-deficient mice were analyzed after bile duct ligation (BDL). BDL-induced liver fibrosis was aggravated with increased phosphorylation of SMAD2/3 and decreased levels of SMAD7 by global or liver-specific Prom1 deficiency but not by cholangiocyte-specific Prom1 deficiency. Indeed, PROM1 prevented SMURF2-induced SMAD7 ubiquitination and degradation by interfering with the molecular association of SMAD7 with SMURF2. We also demonstrated that hepatocyte-specific overexpression of SMAD7 ameliorated BDL-induced liver fibrosis in liver-specific Prom1-deficient mice. Thus, we conclude that PROM1 is necessary for the negative regulation of TGFβ signaling during liver fibrosis.
Liver disease: Preventing progression of fibrosis
Progression of liver fibrosis is kept in check by a regulatory protein that switches off a signaling pathway responsible for cell death and subsequent scar tissue formation. Liver fibrosis is a common outcome of alcoholism, viral infection, and hepatitis. Researchers led by Young-Gyu Ko at Korea University, Seoul, South Korea, determined that a protein called PROM-1 is highly expressed in fibrotic liver tissue from mice and humans, and set out to uncover its function. They found that PROM-1 exerts a protective role, as PROM-1-deficient mice experienced accelerated liver degeneration in response to bile duct injury. PROM-1 acts by blocking the effects of transforming growth factor-β, a signaling protein which promotes cell death. These results are consistent with evidence linking PROM-1 to anti-fibrotic activity in other organ systems.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details




1 Korea University, Tunneling Nanotube Research Center, Seoul, Korea (GRID:grid.222754.4) (ISNI:0000 0001 0840 2678); Korea University, Division of Life Sciences, Seoul, Korea (GRID:grid.222754.4) (ISNI:0000 0001 0840 2678)
2 Dongguk University College of Medicine, Department of Surgery, Gyeongju, Korea (GRID:grid.255168.d) (ISNI:0000 0001 0671 5021)
3 Inha University, Research Center for Controlling Intercellular Communication, College of Medicine, Incheon, Korea (GRID:grid.202119.9) (ISNI:0000 0001 2364 8385)