It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Improving power efficiency (PE) and reducing roll-off are of significant importance for the commercialization of white organic light-emitting diodes (WOLEDs) in consideration of energy conservation. Herein, record-beating PE of 130.7 lm W−1 and outstanding external quantum efficiency (EQE) of 31.1% are achieved in all-fluorescence two-color WOLEDs based on a simple sandwich configuration of emitting layer consisting of sky-blue and orange delayed fluorescence materials. By introducing a red fluorescence dopant, all-fluorescence three-color WOLEDs with high color rendering index are constructed based on an interlayer sensitization configuration, furnishing ultrahigh PE of 110.7 lm W−1 and EQE of 30.8%. More importantly, both two-color and three-color WOLEDs maintain excellent PEs at operating luminance with smaller roll-offs than the reported state-of-the-art WOLEDs, and further device optimization realizes outstanding comprehensive performances of low driving voltages, large luminance, high PEs and long operational lifetimes. The underlying mechanisms of the impressive device performances are elucidated by host-tuning effect and electron-trapping effect, providing useful guidance for the development of energy-conserving all-fluorescence WOLEDs.
High power efficiency and low roll-off values are essential to the commercialization of white organic light-emitting diodes. Here, the authors construct all-fluorescence devices with an orange emitting layer sandwiched between two sky-blue emitting layers, achieving figure-of-merit of 130.7 lm/W.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details



1 South China University of Technology, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Guangzhou, China (GRID:grid.79703.3a) (ISNI:0000 0004 1764 3838)
2 The Chinese University of Hong Kong, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, Shenzhen, China (GRID:grid.10784.3a) (ISNI:0000 0004 1937 0482)