Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Multiple methods have been developed to identify the transition threshold from the reconstructed satellite-derived normalized difference vegetation indices (NDVI) time series and to determine the inflection point corresponding to a certain phenology phase (e.g., the spring green-up date (GUD)). We address an issue that large uncertainties might occur in the inflection point identification of spring GUD using the traditional satellite-based methods since different vegetation types exhibit asynchronous phenological phases over a heterogeneous ecoregion. We tentatively developed a Maximum-derivative-based (MDB) method and provided inter-comparisons with two traditional methods to detect the turning points by the reconstructed time-series data of NDVI for identifying the GUD against long-term observations from the sites covered by a mixture of deciduous forest and herbages in the Pan European Phenology network. Results showed that higher annual mean temperature would advance the spring GUD, but the sensitive magnitudes differed depending on the vegetation type. Therefore, the asynchronization of phenological phases among different vegetation types would be more pronounced in the context of global warming. We found that the MDB method outperforms two other traditional methods (the 0.5-threshold-based method and the maximum-ratio-based method) in predicting the GUD of the subsequent-green-up vegetation type when compared with ground observation, especially at sites with observed GUD of herbages earlier than deciduous forest, while the Maximum-ratio-based method showed better performance for identifying GUDs of the foremost-green-up vegetation type. Although the new method improved in our study is not universally applicable on a global scale, our results, however, highlight the limitation of current inflection point identify algorithms in predicting the GUD derived from satellite-based vegetation indices datasets in an ecoregion with heterogeneous vegetation types and asynchronous phenological phases, which makes it helpful for us to better predict plant phenology on an ecoregion-scale under future ongoing climate warming.

Details

Title
Identification of the Spring Green-Up Date Derived from Satellite-Based Vegetation Index over a Heterogeneous Ecoregion
Author
Wu, Jianping 1 ; Chang, Zhongbing 2 ; Su, Yongxian 1 ; Zhang, Chaoqun 3 ; Wu, Xiong 3 ; Bi, Chongyuan 4 ; Liu, Liyang 3   VIAFID ORCID Logo  ; Yang, Xueqin 3 ; Li, Xueyan 3 

 Guangdong Provincial Key Lab of Remote Sensing and Geographical Information System, Guangdong Open Laboratory of Geospatial Information Technology and Application, Guangzhou Institute of Geography, Guangdong Academy of Sciences, Guangzhou 510070, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China 
 Key Laboratory of Tropical and Subtropical Natural Resources in South China, Surveying and Mapping Institute Lands and Resource Department of Guangdong Province, Guangzhou 510663, China 
 Guangdong Provincial Key Lab of Remote Sensing and Geographical Information System, Guangdong Open Laboratory of Geospatial Information Technology and Application, Guangzhou Institute of Geography, Guangdong Academy of Sciences, Guangzhou 510070, China 
 Guangdong Provincial Key Lab of Remote Sensing and Geographical Information System, Guangdong Open Laboratory of Geospatial Information Technology and Application, Guangzhou Institute of Geography, Guangdong Academy of Sciences, Guangzhou 510070, China; Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming 650093, China 
First page
4349
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2711473538
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.