Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The U.S. Forest Service, Forest Inventory and Analysis (FIA) program is tasked with making and reporting estimates of various forest attributes using a design-based network of permanent sampling plots. To make its estimates more precise, FIA uses a technique known as post-stratification to group plots into more homogenous classes, which helps lower variance when deriving population means. Currently FIA uses a nationally available map of tree canopy cover for post-stratification, which tends to work well for forest area estimates but less so for structural attributes like volume. Here we explore the use of new statewide digital aerial photogrammetric (DAP) point clouds developed from stereo imagery collected by the National Agricultural Imagery Program (NAIP) to improve these estimates in the southeastern mixed hardwood forests of Tennessee and Virginia, United States (U.S.). Our objectives are to 1. evaluate the relative quality of NAIP DAP point clouds using airborne LiDAR and FIA tree height measurements, and 2. assess the ability of NAIP digital height models (DHMs) to improve operational forest inventory estimates above the gains already achieved from FIA’s current post-stratification approach. Our results show the NAIP point clouds were moderately to strongly correlated with FIA field measured maximum tree heights (average Pearson’s r = 0.74) with a slight negative bias (−1.56 m) and an RMSE error of ~4.0 m. The NAIP point cloud heights were also more accurate for softwoods (R2s = 0.60–0.79) than hardwoods (R2s = 0.33–0.50) with an error structure that was consistent across multiple years of FIA measurements. Several factors served to degrade the relationship between the NAIP point clouds and FIA data, including a lack of 3D points in areas of advanced hardwood senescence, spurious height values in deep shadows and imprecision of FIA plot locations (which were estimated to be off the true locations by +/− 8 m). Using NAIP strata maps for post-stratification yielded forest volume estimates that were 31% more precise on average than estimates stratified with tree canopy cover data. Combining NAIP DHMs with forest type information from national map products helped improve stratification performance, especially for softwoods. The monetary value of using NAIP height maps to post-stratify FIA survey unit total volume estimates was USD 1.8 million vs. the costs of installing more field plots to achieve similar precision gains. Overall, our results show the benefit and growing feasibility of using NAIP point clouds to improve FIA’s operational forest inventory estimates.

Details

Title
Evaluating Statewide NAIP Photogrammetric Point Clouds for Operational Improvement of National Forest Inventory Estimates in Mixed Hardwood Forests of the Southeastern U.S.
Author
Schroeder, Todd A 1 ; Obata, Shingo 2 ; Papeş, Monica 3 ; Branoff, Benjamin 4   VIAFID ORCID Logo 

 United States Department of Agriculture, Forest Service, Southern Research Station, 4700 Old Kingston Pike, Knoxville, TN 37919, USA 
 Institute of Statistical Mathematics, 10-3 Midori-cho, Tachikawa, Tokyo 1908562, Japan; National Institute for Mathematical and Biological Synthesis, University of Tennessee, 1122 Volunteer Blvd., Knoxville, TN 37996, USA 
 National Institute for Mathematical and Biological Synthesis, University of Tennessee, 1122 Volunteer Blvd., Knoxville, TN 37996, USA; Department of Ecology & Evolutionary Biology, University of Tennessee, 569 Dabney Hall, Knoxville, TN 37996, USA 
 Department of Biology, Universität Hamburg, Ohnhorststraße 18, 22609 Hamburg, Germany 
First page
4386
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2711494130
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.