Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this paper, we considered uplink communication, focusing on the improvement of spectral efficiency (SE) for millimeter wave (mmWave) multiple-input multiple-output non-orthogonal multiple access (MIMO-NOMA) systems. Firstly, we proposed an adaptive cluster head selection algorithm. Then, a channel-aligned analog beamforming scheme was designed based on the selected cluster heads. After that, the user grouping algorithm was designed based on the user-equivalent channel correlation. Subsequently, the power allocation problem was transformed from a nonconvex problem to a convex one using the quadratic transformation (QT) method considering all relevant constraints. Finally, the optimal user power allocation and digital beamforming design was obtained by iteratively optimizing the power and digital beamforming. Simulation results show that our proposed scheme can achieve a higher SE than existing methods.

Details

Title
Spectral Efficiency Optimization of Uplink Millimeter Wave MIMO-NOMA Systems
Author
Zhang, Yinhao; Deng, Honggui; He, Jun; Zhu, Zaoxing  VIAFID ORCID Logo  ; Peng, Chengzuo; Xiao, Haoqi
First page
6466
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2711494247
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.