Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In recent years, autonomous driving technology has been changing from “human adapting to vehicle” to “vehicle adapting to human”. To improve the adaptability of autonomous driving systems to human drivers, a time-series-based personalized lane change decision (LCD) model is proposed. Firstly, according to the characteristics of the subject vehicle (SV) with respect to speed, acceleration and headway, an unsupervised clustering algorithm, namely, a Gaussian mixture model (GMM), is used to identify its three different driving styles. Secondly, considering the interaction between the SV and the surrounding vehicles, the lane change (LC) gain value is produced by developing a gain function to characterize their interaction. On the basis of the recognition of the driving style, this gain value and LC feature parameters are employed as model inputs to develop a personalized LCD model on the basis of a long short-term memory (LSTM) recurrent neural network model (RNN). The proposed method is tested using the US Open Driving Dataset NGSIM. The results show that the accuracy, F1 score, and macro-average area under the curve (macro-AUC) value of the proposed method for LC behavior prediction are 0.965, 0.951 and 0.983, respectively, and the performance is significantly better than that of other mainstream models. At the same time, the method is able to capture the LCD behavior of different human drivers, enabling personalized driving.

Details

Title
Time-Series-Based Personalized Lane-Changing Decision-Making Model
Author
Ye, Ming 1 ; Pu, Lei 1   VIAFID ORCID Logo  ; Pan, Li 1 ; Lu, Xiangwei 1 ; Liu, Yonggang 2   VIAFID ORCID Logo 

 Key Laboratory of Advanced Manufacturing Technology for Automobile Parts, Ministry of Education, Chongqing University of Technology, Chongqing 400054, China 
 State Key Laboratory of Mechanical Transmissions, College of Mechanical and Vehicle Engineering, Chonqing University, Chongqing 400044, China 
First page
6659
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2711494280
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.