Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Machine learning (ML) is a key technology in smart manufacturing as it provides insights into complex processes without requiring deep domain expertise. This work deals with deep learning algorithms to determine a 3D reconstruction from a single 2D grayscale image. The potential of 3D reconstruction can be used for quality control because the height values contain relevant information that is not visible in 2D data. Instead of 3D scans, estimated depth maps based on a 2D input image can be used with the advantage of a simple setup and a short recording time. Determining a 3D reconstruction from a single input image is a difficult task for which many algorithms and methods have been proposed in the past decades. In this work, three deep learning methods, namely stacked autoencoder (SAE), generative adversarial networks (GANs) and U-Nets are investigated, evaluated and compared for 3D reconstruction from a 2D grayscale image of laser-welded components. In this work, different variants of GANs are tested, with the conclusion that Wasserstein GANs (WGANs) are the most robust approach among them. To the best of our knowledge, the present paper considers for the first time the U-Net, which achieves outstanding results in semantic segmentation, in the context of 3D reconstruction tasks. Unlike the U-Net, which uses standard convolutions, the stacked dilated U-Net (SDU-Net) applies stacked dilated convolutions. Of all the 3D reconstruction approaches considered in this work, the SDU-Net shows the best performance, not only in terms of evaluation metrics but also in terms of computation time. Due to the comparably small number of trainable parameters and the suitability of the architecture for strong data augmentation, a robust model can be generated with only a few training data.

Details

Title
Analysis of AI-Based Single-View 3D Reconstruction Methods for an Industrial Application
Author
Hartung, Julia 1   VIAFID ORCID Logo  ; Dold, Patricia M 1   VIAFID ORCID Logo  ; Jahn, Andreas 2   VIAFID ORCID Logo  ; Heizmann, Michael 3   VIAFID ORCID Logo 

 TRUMPF Laser GmbH, Aichhalder Str. 39, 78713 Schramberg, Germany; Institute of Industrial Information Technology, Karlsruhe Institute of Technology, Hertzstraße 16, 76187 Karlsruhe, Germany 
 TRUMPF Laser GmbH, Aichhalder Str. 39, 78713 Schramberg, Germany 
 Institute of Industrial Information Technology, Karlsruhe Institute of Technology, Hertzstraße 16, 76187 Karlsruhe, Germany 
First page
6425
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2711494930
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.