Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

To improve the seeding motor control performance of electric-driven seeding (EDS), a genetic particle swarm optimization (GAPSO)-optimized fuzzy PID control strategy for electric-driven seeding was designed. Since the parameters of the fuzzy controller were difficult to determine, two quantization factors were applied to the input of the fuzzy controller, and three scaling factors were introduced into the output of fuzzy controller. Genetic algorithm (GA) and particle swarm optimization (PSO) were combined into GAPSO by a genetic screening method. GAPSO was introduced to optimize the initial values of the two quantization factors, three scaling factors, and three characteristic functions before updating. The simulation results showed that the maximum overshoot of the GAPSO-based fuzzy PID controller system was 0.071%, settling time was 0.408 s, and steady-state error was 3.0693 × 10−5, which indicated the excellent control performance of the proposed strategy. Results of the field experiment showed that the EDS had better performance than the ground wheel chain sprocket seeding (GCSS). With a seeder operating speed of 6km/h, the average qualified index (Iq) was 95.83%, the average multiple index (Imult) was 1.11%, the average missing index (Imiss) was 3.23%, and the average precision index (Ip) was 14.64%. The research results provide a reference for the parameter tuning mode of the fuzzy PID controller for EDS.

Details

Title
GAPSO-Optimized Fuzzy PID Controller for Electric-Driven Seeding
Author
Wang, Song 1 ; Zhao, Bin 1 ; Yi, Shujuan 1 ; Zhou, Zheng 1 ; Zhao, Xue 2 

 College of Engineering, Heilongjiang Bayi Agricultural University, Daqing 163319, China 
 College of Software, Shanxi Agricultural University, Taigu, Jinzhong 030801, China 
First page
6678
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2711495740
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.