It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Inkjet printing is a cost-effective and scalable way to assemble colloidal materials into desired patterns in a vacuum- and lithography-free manner. Two-dimensional (2D) nanosheets are a promising material category for printed electronics because of their compatibility with solution processing for stable ink formulations as well as a wide range of electronic types from metal, semiconductor to insulator. Furthermore, their dangling bond-free surface enables atomically thin, electronically-active thin films with van der Waals contacts which significantly reduce the junction resistance. Here, we demonstrate all inkjet-printed thin-film transistors consisting of electrochemically exfoliated graphene, MoS2, and HfO2 as metallic electrodes, a semiconducting channel, and a high-k dielectric layer, respectively. In particular, the HfO2 dielectric layer is prepared via two-step; electrochemical exfoliation of semiconducting HfS2 followed by a thermal oxidation process to overcome the incompatibility of electrochemical exfoliation with insulating crystals. Consequently, all inkjet-printed 2D nanosheets with various electronic types enable high-performance, thin-film transistors which demonstrate field-effect mobilities and current on/off ratios of ~10 cm2 V−1 s−1 and >105, respectively, at low operating voltage.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details



1 Sungkyunkwan University (SKKU), School of Advanced Materials Science and Engineering, Suwon, Republic of Korea (GRID:grid.264381.a) (ISNI:0000 0001 2181 989X)
2 University of Chemistry and Technology Prague, Department of Inorganic Chemistry, Prague 6, Czech Republic (GRID:grid.448072.d) (ISNI:0000 0004 0635 6059)
3 Yonsei University, Department of Chemical and Biomolecular Engineering, Seoul, Republic of Korea (GRID:grid.15444.30) (ISNI:0000 0004 0470 5454)
4 Sungkyunkwan University (SKKU), School of Advanced Materials Science and Engineering, Suwon, Republic of Korea (GRID:grid.264381.a) (ISNI:0000 0001 2181 989X); Sungkyunkwan University (SKKU), KIST-SKKU Carbon-Neutral Research Center, Suwon, Republic of Korea (GRID:grid.264381.a) (ISNI:0000 0001 2181 989X)