It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Water-in-salt electrolytes are an appealing option for future electrochemical energy storage devices due to their safety and low toxicity. However, the physicochemical interactions occurring at the interface between the electrode and the water-in-salt electrolyte are not yet fully understood. Here, via in situ Raman spectroscopy and molecular dynamics simulations, we investigate the electrical double-layer structure occurring at the interface between a water-in-salt electrolyte and an Au(111) electrode. We demonstrate that most interfacial water molecules are bound with lithium ions and have zero, one, or two hydrogen bonds to feature three hydroxyl stretching bands. Moreover, the accumulation of lithium ions on the electrode surface at large negative polarizations reduces the interfacial field to induce an unusual “hydrogen-up” structure of interfacial water and blue shift of the hydroxyl stretching frequencies. These physicochemical behaviours are quantitatively different from aqueous electrolyte solutions with lower concentrations. This atomistic understanding of the double-layer structure provides key insights for designing future aqueous electrolytes for electrochemical energy storage devices.
Water-in-salt electrolytes can be useful for future electrochemical energy storage systems. Here, the authors investigate the potential-dependent double-layer structures at the interface between a gold electrode and a highly concentrated aqueous electrolyte solution via in situ Raman measurements.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details







1 Emory University, Department of Chemistry, Atlanta, USA (GRID:grid.189967.8) (ISNI:0000 0001 0941 6502)
2 Huazhong University of Science and Technology (HUST), State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Wuhan, China (GRID:grid.33199.31) (ISNI:0000 0004 0368 7223)
3 Xiamen University, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen, China (GRID:grid.12955.3a) (ISNI:0000 0001 2264 7233)
4 Cornell University, Department of Chemistry and Chemical Biology, Ithaca, USA (GRID:grid.5386.8) (ISNI:000000041936877X)