It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The mannose-6-phosphate (M6P) biosynthetic pathway for lysosome biogenesis has been studied for decades and is considered a well-understood topic. However, whether this pathway is regulated remains an open question. In a genome-wide CRISPR/Cas9 knockout screen, we discover TMEM251 as the first regulator of the M6P modification. Deleting TMEM251 causes mistargeting of most lysosomal enzymes due to their loss of M6P modification and accumulation of numerous undigested materials. We further demonstrate that TMEM251 localizes to the Golgi and is required for the cleavage and activity of GNPT, the enzyme that catalyzes M6P modification. In zebrafish, TMEM251 deletion leads to severe developmental defects including heart edema and skeletal dysplasia, which phenocopies Mucolipidosis Type II. Our discovery provides a mechanism for the newly discovered human disease caused by TMEM251 mutations. We name TMEM251 as GNPTAB cleavage and activity factor (GCAF) and its related disease as Mucolipidosis Type V.
Lysosomal biogenesis errors often result in diseases including mucolipidosis. Here Zhang and Yang et al. identify TMEM251/GCAF as a mannose-6-phosphate modification regulator that is necessary for correct lysosomal targeting, and classify Mucolipidosis Type V as resulting from GCAF mutations.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details








1 University of Michigan, Department of Molecular, Cellular, and Developmental Biology, Ann Arbor, USA (GRID:grid.214458.e) (ISNI:0000000086837370)
2 University of Michigan Medical School, BRCF Microscopy Core, Ann Arbor, USA (GRID:grid.214458.e) (ISNI:0000000086837370)
3 University of Michigan Medical School, Department of Human Genetics, Ann Arbor, USA (GRID:grid.214458.e) (ISNI:0000000086837370)