It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Hepatitis E Virus (HEV) follows waterborne or zoonotic/foodborne transmission. Genotype 3 HEV infections are worldwide spread, especially in swine populations, representing an emerging threat for human health, both for farm workers and pork meat consumers. Unfortunately, HEV in vitro culture and analysis are still difficult, resulting in a poor understanding of its biology and hampering the implementation of counteracting strategies. Indeed, HEV encodes for only one non-structural multifunctional and multidomain protein (ORF1), which might be a good candidate for anti-HEV drugging strategies. In this context, an in silico molecular modelling approach that consisted in homology modelling to derive the 3D model target, docking study to simulate the binding event, and molecular dynamics to check complex stability over time was used. This workflow succeeded to describe ORF1 RNA Helicase domain from a molecular standpoint allowing the identification of potential inhibitory compounds among natural plant-based flavagline-related molecules such as silvestrol, rocaglamide and derivatives thereof. In the context of scouting potential anti-viral compounds and relying on the outcomes presented, further dedicated investigations on silvestrol, rocaglamide and a promising oxidized derivative have been suggested. For the sake of data reproducibility, the 3D model of HEV RNA Helicase has been made publicly available.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 University of Parma, Department of Food and Drug, Parma, Italy (GRID:grid.10383.39) (ISNI:0000 0004 1758 0937)