It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Electrosynthesis of urea from CO2 and NOX provides an exceptional opportunity for human society, given the increasingly available renewable energy. Urea electrosynthesis is challenging. In order to raise the overall electrosynthesis efficiency, the most critical reaction step for such electrosynthesis, C-N coupling, needs to be significantly improved. The C-N coupling can only happen at a narrow potential window, generally in the low overpotential region, and a fundamental understanding of the C-N coupling is needed for further development of this strategy. In this regard, we perform ab initio Molecular Dynamics simulations to reveal the origin of C-N coupling under a small electrode potential window with both the dynamic nature of water as a solvent, and the electrode potentials considered. We explore the key reaction networks for urea formation on Cu(100) surface in neutral electrolytes. Our work shows excellent agreement with experimentally observed selectivity under different potentials on the Cu electrode. We discover that the *NH and *CO are the key precursors for C-N bonds formation at low overpotential, while at high overpotential the C-N coupling occurs between adsorbed *NH and solvated CO. These insights provide vital information for future spectroscopic measurements and enable us to design new electrochemical systems for more value-added chemicals.
Urea electrosyntehsis from CO2 and NOx is a challenging reaction that is becoming increasingly important. This work uses ab initio molecular dynamics simulations to reveal the origin of C-N coupling mechanisms and reaction networks in urea synthesis.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details




1 The University of Adelaide, School of Chemical Engineering and Advanced Materials, Adelaide, Australia (GRID:grid.1010.0) (ISNI:0000 0004 1936 7304); The University of Adelaide, Centre for Materials in Energy and Catalysis, Adelaide, Australia (GRID:grid.1010.0) (ISNI:0000 0004 1936 7304)
2 Kent State University, Department of Chemistry and Biochemistry & Advanced Materials and Liquid Crystal Institute, Kent, USA (GRID:grid.258518.3) (ISNI:0000 0001 0656 9343)