It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
The diagnosis of cardiac abnormalities based on heart sound signal is a research hotspot in recent years. The early diagnosis of cardiac abnormalities has a crucial significance for the treatment of heart diseases.
Methods
For the sake of achieving more practical clinical applications of automatic recognition of cardiac abnormalities, here we proposed a novel fuzzy matching feature extraction method. First of all, a group of Gaussian wavelets are selected and then optimized based on a template signal. Convolutional features of test signal and the template signal are then computed. Matching degree and matching energy features between template signal and test signal in time domain and frequency domain are then extracted. To test performance of proposed feature extraction method, machine learning algorithms such as K-nearest neighbor, support vector machine, random forest and multilayer perceptron with grid search parameter optimization are constructed to recognize heart disease using the extracted features based on phonocardiogram signals.
Results
As a result, we found that the best classification accuracy of random forest reaches 96.5% under tenfold cross validation using the features extracted by the proposed method. Further, Mel-Frequency Cepstral Coefficients of phonocardiogram signals combing with features extracted by our algorithm are evaluated. Accuracy, sensitivity and specificity of integrated features reaches 99.0%, 99.4% and 99.7% respectively when using support vector machine, which achieves the best performance among all reported algorithms based on the same dataset. On several common features, we used independent sample t-tests. The results revealed that there are significant differences (p < 0.05) between 5 categories.
Conclusion
It can be concluded that our proposed fuzzy matching feature extraction method is a practical approach to extract powerful and interpretable features from one-dimensional signals for heart sound diagnostics and other pattern recognition task.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer