Abstract

Background

The diagnosis of cardiac abnormalities based on heart sound signal is a research hotspot in recent years. The early diagnosis of cardiac abnormalities has a crucial significance for the treatment of heart diseases.

Methods

For the sake of achieving more practical clinical applications of automatic recognition of cardiac abnormalities, here we proposed a novel fuzzy matching feature extraction method. First of all, a group of Gaussian wavelets are selected and then optimized based on a template signal. Convolutional features of test signal and the template signal are then computed. Matching degree and matching energy features between template signal and test signal in time domain and frequency domain are then extracted. To test performance of proposed feature extraction method, machine learning algorithms such as K-nearest neighbor, support vector machine, random forest and multilayer perceptron with grid search parameter optimization are constructed to recognize heart disease using the extracted features based on phonocardiogram signals.

Results

As a result, we found that the best classification accuracy of random forest reaches 96.5% under tenfold cross validation using the features extracted by the proposed method. Further, Mel-Frequency Cepstral Coefficients of phonocardiogram signals combing with features extracted by our algorithm are evaluated. Accuracy, sensitivity and specificity of integrated features reaches 99.0%, 99.4% and 99.7% respectively when using support vector machine, which achieves the best performance among all reported algorithms based on the same dataset. On several common features, we used independent sample t-tests. The results revealed that there are significant differences (p < 0.05) between 5 categories.

Conclusion

It can be concluded that our proposed fuzzy matching feature extraction method is a practical approach to extract powerful and interpretable features from one-dimensional signals for heart sound diagnostics and other pattern recognition task.

Details

Title
Diagnosis of cardiac abnormalities based on phonocardiogram using a novel fuzzy matching feature extraction method
Author
Yang, Wanrong; Xu, Jiajie; Xiang, Junhong; Yan, Zhonghong; Zhou, Hengyu; Wen, Binbin; Kong, Hai; Zhu, Rui; Wang, Li
Pages
1-13
Section
Research
Publication year
2022
Publication date
2022
Publisher
BioMed Central
e-ISSN
14726947
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2715392501
Copyright
© 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.