It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Purpose
Primary open-angle glaucoma (POAG) continues to be a poorly understood disease. Although there were multiple researches on the identification of POAG biomarkers, few studies systematically revealed the immune-related cells and immune infiltration of POAG. Bioinformatics analyses of optic nerve (ON) and trabecular meshwork (TM) gene expression data were performed to further elucidate the immune-related genes of POAG and identify candidate target genes for treatment.
Methods
We performed a gene analysis of publicly available microarray data, namely, the GSE27276-GPL2507, GSE2378-GPL8300, GSE9944-GPL8300, and GSE9944-GPL571 datasets from the Gene Expression Omnibus database. The obtained datasets were used as input for parallel pathway analyses. Based on random forest and support vector machine (SVM) analysis to screen the key genes, significantly changed pathways were clustered into functional categories, and the results were further investigated. CIBERSORT was used to evaluate the infiltration of immune cells in POAG tissues. A network visualizing the differences between the data in the POAG and normal groups was created. GO and KEGG enrichment analyses were performed using the Metascape database. We divided the differentially expressed mRNAs into upregulated and downregulated groups and predicted the drug targets of the differentially expressed genes through the Connectivity Map (CMap) database.
Results
A total of 49 differentially expressed genes, including 19 downregulated genes and 30 upregulated genes, were detected. Five genes ((Keratin 14) KRT14, (Hemoglobin subunit beta) HBB, (Acyl-CoA Oxidase 2) ACOX2, (Hephaestin) HEPH and Keratin 13 (KRT13)) were significantly changed. The results showed that the expression profiles of drug disturbances, including those for avrainvillamide-analysis-3, cytochalasin-D, NPI-2358, oxymethylone and vinorelbine, were negatively correlated with the expression profiles of disease disturbances. This finding indicated that these drugs may reduce or even reverse the POAG disease state.
Conclusion
This study provides an overview of the processes involved in the molecular pathogenesis of POAG in the ON and TM. The findings provide a new understanding of the molecular mechanism of POAG from the perspective of immunology.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer