It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Transport walking has drawn growing interest due to its potential to increase levels of physical activities and reduce reliance on vehicles. While existing studies have compared built environment-health associations between Euclidean buffers and network buffers, no studies have systematically quantified the extent of bias in health effect estimates when exposures are measured in different buffers. Further, prior studies have done the comparisons focusing on only one or two geographic regions, limiting generalizability and restricting ability to test whether direction or magnitude of bias are different by context. This study aimed to quantify the degree of bias in associations between built environment exposures and transport walking when exposures were operationalized using Euclidean buffers rather than network buffers in diverse contexts.
Methods
We performed a simulations study to systematically evaluate the degree of bias in associations between built environment exposures in Euclidean buffers and network buffers and transport walking, assuming network buffers more accurately captured true exposures. Additionally, we used empirical data from a multi-ethnic, multi-site cohort to compare associations between built environment amenities and walking for transport where built environment exposures were derived using Euclidean buffers versus network buffers.
Results
Simulation results found that the bias induced by using Euclidean buffer models was consistently negative across the six study sites (ranging from -80% to -20%), suggesting built environment exposures measured using Euclidean buffers underestimate health effects on transport walking. Percent bias was uniformly smaller for the larger 5 km scale than the 1 km and 0.25 km spatial scales, independent of site or built environment categories. Empirical findings aligned with the simulation results: built environment-health associations were stronger for built environment exposures operationalized using network buffers than using Euclidean buffers.
Conclusion
This study is the first to quantify the extent of bias in the magnitude of the associations between built environment exposures and transport walking when the former are measured in Euclidean buffers vs. network buffers, informing future research to carefully conceptualize appropriate distance-based buffer metrics in order to better approximate real geographic contexts. It also helps contextualize existing research in the field that used Euclidean buffers when that were the only option. Further, this study provides an example of the uncertain geographic context problem.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer