Full text

Turn on search term navigation

© 2022 Akmal et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

N-linked is the most common type of glycosylation which plays a significant role in identifying various diseases such as type I diabetes and cancer and helps in drug development. Most of the proteins cannot perform their biological and psychological functionalities without undergoing such modification. Therefore, it is essential to identify such sites by computational techniques because of experimental limitations. This study aims to analyze and synthesize the progress to discover N-linked places using machine learning methods. It also explores the performance of currently available tools to predict such sites. Almost seventy research articles published in recognized journals of the N-linked glycosylation field have shortlisted after the rigorous filtering process. The findings of the studies have been reported based on multiple aspects: publication channel, feature set construction method, training algorithm, and performance evaluation. Moreover, a literature survey has developed a taxonomy of N-linked sequence identification. Our study focuses on the performance evaluation criteria, and the importance of N-linked glycosylation motivates us to discover resources that use computational methods instead of the experimental method due to its limitations.

Details

Title
An analytical study on the identification of N-linked glycosylation sites using machine learning model
Author
Muhammad Aizaz Akmal; Muhammad Awais Hassan; Shoaib Muhammad; Khurshid, Khaldoon S; Abdullah, Mohamed
Publication year
2022
Publication date
Sep 21, 2022
Publisher
PeerJ, Inc.
e-ISSN
23765992
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2716373556
Copyright
© 2022 Akmal et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.