Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Simple Summary

The present work is devoted to the features of antipodal cells at the early stages of wheat seed development, ensuring the formation and protection of a full-fledged grain. Using the methods of cell and molecular biology, changes in the structure of these cells and their components during active functioning and death are shown. For the first time, data on the expression of some genes confirming the functions of antipodal cells were obtained. The characteristic features of cells at the stages of death were revealed. The data obtained indicate the key role of antipodal cells in the process of grain maturation and subsequently allow us to identify substances that ensure the formation of tissue, which is the food of the whole world.

Abstract

The ultrastructure of antipodal cells of the Triticum aestivum embryo sac was studied at different stages of differentiation and programmed cell death. The importance of cell function in the antipodal complex is evidenced by the fact that it is fully formed before double fertilization, past the stages of proliferation of three initial cells, and several rounds of genome endoreduplication during differentiation. In this study, we showed that the actively synthesizing organelles, the granular reticulum, and Golgi apparatus, alter their structure during differentiation and death. The polymorphism of the shape of the mitochondria and plastids was demonstrated. For the first time, the actin filaments of the cytoskeleton and numerous multivesicular bodies associated with the plasma membrane were detected in the cytoplasm. The transfer of cytoplasm and organelles between antipodal cells and into the coenocyte of the endosperm was confirmed. DNA breaks and the release of cytochrome c at various stages of death were revealed. To understand the function of the antipodal cells, a quantitative PCR analysis of the expression of wheat genes involved in protective, antistress, and metabolic processes was carried out. We found that gene expression in the antipodal cell fraction was increased compared with that in the whole embryo sac. On the basis of the data, we assume that antipodal cells produce both nutrients and numerous antistress factors that ensure the normal development of the endosperm of the grain, which, in turn, further ensures the development of the embryo.

Details

Title
Wheat Antipodal Cells with Polytene Chromosomes in the Embryo Sac Are Key to Understanding the Formation of Grain in Cereals
Author
Doronina, Tatiana V 1   VIAFID ORCID Logo  ; Ashapkin, Vasily V 2   VIAFID ORCID Logo  ; Lazareva, Elena M 3 

 Biology Faculty, Lomonosov Moscow State University, Moscow 119234, Russia 
 Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia 
 Biology Faculty, Lomonosov Moscow State University, Moscow 119234, Russia; All-Russia Research Institute for Agricultural Biotechnology, Moscow 119234, Russia 
First page
1340
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20797737
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2716492053
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.