Full text

Turn on search term navigation

© 2022 Mikhaylenko et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

T-cell prolymphocytic leukemia (T-PLL) is a rare blood cancer with poor prognosis. Overexpression of the proto-oncogene TCL1A and missense mutations of the tumor suppressor ATM are putative main drivers of T-PLL development, but so far only little is known about the existence of T-PLL gene expression subtypes. We performed an in-depth computational reanalysis of 68 gene expression profiles of one of the largest currently existing T-PLL patient cohorts. Hierarchical clustering combined with bootstrapping revealed three robust T-PLL gene expression subgroups. Additional comparative analyses revealed similarities and differences of these subgroups at the level of individual genes, signaling and metabolic pathways, and associated gene regulatory networks. Differences were mainly reflected at the transcriptomic level, whereas gene copy number profiles of the three subgroups were much more similar to each other, except for few characteristic differences like duplications of parts of the chromosomes 7, 8, 14, and 22. At the network level, most of the 41 predicted potential major regulators showed subgroup-specific expression levels that differed at least in comparison to one other subgroup. Functional annotations suggest that these regulators contribute to differences between the subgroups by altering processes like immune responses, angiogenesis, cellular respiration, cell proliferation, apoptosis, or migration. Most of these regulators are known from other cancers and several of them have been reported in relation to leukemia (e.g. AHSP, CXCL8, CXCR2, ELANE, FFAR2, G0S2, GIMAP2, IL1RN, LCN2, MBTD1, PPP1R15A). The existence of the three revealed T-PLL subgroups was further validated by a classification of T-PLL patients from two other smaller cohorts. Overall, our study contributes to an improved stratification of T-PLL and the observed subgroup-specific molecular characteristics could help to develop urgently needed targeted treatment strategies.

Details

Title
Computational gene expression analysis reveals distinct molecular subgroups of T-cell prolymphocytic leukemia
Author
Mikhaylenko, Nathan; Wahnschaffe, Linus; Herling, Marco; Roeder, Ingo; Seifert, Michael  VIAFID ORCID Logo 
First page
e0274463
Section
Research Article
Publication year
2022
Publication date
Sep 2022
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2716502637
Copyright
© 2022 Mikhaylenko et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.