Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Much effort has been devoted to transferring efficiently different machine-learning algorithms, and especially deep neural networks, to edge devices in order to fulfill, among others, real-time, storage and energy-consumption issues. The limited resources of edge devices and the necessity for energy saving to lengthen the durability of their batteries, has encouraged an interesting trend in reducing neural networks and graphs, while keeping their predictability almost untouched. In this work, an alternative to the latest techniques for finding these reductions in networks size is proposed, seeking to figure out a simplistic way to shrink networks while maintaining, as far as possible, their predictability testing on well-known datasets.

Details

Title
Reviewing and Discussing Graph Reduction in Edge Computing Context
Author
Garmendia-Orbegozo, Asier 1 ; Núñez-Gonzalez, José David 2 ; Antón, Miguel Ángel 2   VIAFID ORCID Logo 

 Department of Applied Mathematics, University of the Basque Country (UPV/EHU) Eibar, 207600 Eibar, Spain 
 TECNALIA, Basque Research and Technology Alliance (BRTA), 20001 San Sebastian, Spain 
First page
161
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20793197
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2716507362
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.