Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In structural sizing optimization problems, the number of design variables typically used is relatively small. The aim of this work is to facilitate the use of large numbers of design variables in such problems, in order to enrich the set of available design options and offer the potential of achieving lower-cost optimal designs. For this purpose, the concept of cascading is employed, which allows an optimization problem to be tackled in a number of successive autonomous optimization stages. In this context, several design variable configurations are constructed, in order to utilize a different configuration at each cascade sizing optimization stage. Each new cascade stage is coupled with the previous one by initializing the new stage using the finally attained optimum design of the previous one. The first optimization stages of the cascade procedure make use of the coarsest configurations with small numbers of design variables and serve the purpose of basic design space exploration. The last stages exploit finer configurations with larger numbers of design variables and aim at fine-tuning the achieved optimal solution. The effectiveness of this sizing optimization approach is assessed using real-world aerospace and civil engineering design problems. Based on the numerical results reported herein, the proposed cascade optimization approach proves to be an effective tool for handling large numbers of design variables and the corresponding extensive design spaces in the framework of structural sizing optimization applications.

Details

Title
Cascade Structural Sizing Optimization with Large Numbers of Design Variables
Author
Charmpis, Dimos C 1   VIAFID ORCID Logo  ; Lagaros, Nikos D 2   VIAFID ORCID Logo 

 Department of Civil and Environmental Engineering, University of Cyprus, 75 Kallipoleos Str., P.O. Box 20537, Nicosia 1678, Cyprus 
 Institute of Structural Analysis & Antiseismic Research, National Technical University of Athens, 9, Heroon Polytechniou Str., Zografou Campus, 15780 Athens, Greece 
First page
717
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
26734109
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2716507419
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.