Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Melanoma is highly aggressive and is known to be efficient at resisting drug-induced apoptotic signals. Resection is currently the gold standard for melanoma management, but it only offers local control of the early stage of the disease. Metastatic melanoma is prone to recurrence, and has a poor prognosis and treatment response. Thus, the need for advanced theranostic alternatives is evident. Photodynamic therapy has been increasingly studied for melanoma treatment; however, it relies on passive drug accumulation, leading to off-target effects. Nanoparticles enhance drug biodistribution, uptake and intra-tumoural concentration and can be functionalised with monoclonal antibodies that offer selective biorecognition. Antibody–drug conjugates reduce passive drug accumulation and off-target effects. Nonetheless, one limitation of monoclonal antibodies and antibody–drug conjugates is their lack of versatility, given cancer’s heterogeneity. Monoclonal antibodies suffer several additional limitations that make recombinant antibody fragments more desirable. SNAP-tag is a modified version of the human DNA-repair enzyme, O6-alkylguanine-DNA alkyltransferase. It reacts in an autocatalytic and covalent manner with benzylguanine-modified substrates, providing a simple protein labelling system. SNAP-tag can be genetically fused with antibody fragments, creating fusion proteins that can be easily labelled with benzylguanine-modified payloads for site-directed delivery. This review aims to highlight the benefits and limitations of the abovementioned approaches and to outline how their combination could enhance photodynamic therapy for melanoma.

Details

Title
The Potential of Antibody Technology and Silver Nanoparticles for Enhancing Photodynamic Therapy for Melanoma
Author
Malindi, Zaria 1 ; Barth, Stefan 2 ; Abrahamse, Heidi 1   VIAFID ORCID Logo 

 Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, 55 Beit Street, Doornfontein, Johannesburg 2028, South Africa 
 Medical Biotechnology and Immunotherapy Research Unit, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road Observatory, Cape Town 7925, South Africa 
First page
2158
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
22279059
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2716507492
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.