Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this paper, we provide a thorough analysis and enhancement techniques of the linearity between the input voltage and output current in charge storage field effect transistor (FET) cells for a vector–matrix multiplier array in neural networks. A planar floating gate FET cell revealed superior linearity, because of boosting the floating gate using a drain voltage through capacitive coupling. If the coupling capacitance is extended by up to half of the gate capacitance, the coefficient of determination for linear regression is easily greater than 99.5%. However, the linearity of the charge trap FET, which keeps electrons in the insulating gate dielectric, must be compensated by either boosting the drain voltage, using a non-linear input driver, or supplying a quadratic current through an auxiliary path in the cell. Drain voltage boosting is limitedly effective over a small input range, while the auxiliary current path shows a coefficient of determination greater than 99.5% over a 500 mV input range. If the cell area matters, the charge trap FET with a diode connected FET as an auxiliary current path revealed the best performance, with an effective number of bits of 5.67, in a 21.3 F2 cell area.

Details

Title
A 5.67 ENOB Vector Matrix Multiplier with Charge Storage FET Cells and Non-Linearity Compensation Techniques
Author
Jin-Young, Hwang; Young-Taek Ryu; Kee-Won Kwon
First page
2911
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2716520940
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.