Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This paper aims to present a general identification procedure for fractional first-order plus dead-time (FFOPDT) models. This identification method is general for processes having S-shaped step responses, where process information is collected from an open-loop step-test experiment, and has been conducted by fitting three arbitrary points on the process reaction curve. In order to validate this procedure and check its effectiveness for the identification of fractional-order models from the process reaction curve, analytical expressions of the FFOPDT model parameters have been obtained for both situations: as a function of any three points and three points symmetrically located on the reaction curve, respectively. Some numerical examples are provided to show the simplicity and effectiveness of the proposed procedure. Good results have been obtained in comparison with other well-recognized identification methods, especially when simplicity is emphasized. This identification procedure has also been applied to a thermal-based experimental setup in order to test its applicability and to obtain insight into the practical issues related to its implementation in a microprocessor-based control hardware. Finally, some comments and reflections about practical issues relating to industrial practice are offered in this context.

Details

Title
Proposal of a General Identification Method for Fractional-Order Processes Based on the Process Reaction Curve
Author
Gude, Juan J 1   VIAFID ORCID Logo  ; Pablo García Bringas 2 

 Department of Computing, Electronics and Communication Technologies, Faculty of Engineering, University of Deusto, 48007 Bilbao, Spain 
 Department of Mechanics, Design and Industrial Management, Faculty of Engineering, University of Deusto, 48007 Bilbao, Spain 
First page
526
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
25043110
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2716527259
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.