Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

With the advent of the era of rapid information expansion, the massive data backlog that exists on the Internet has led to a serious information overload problem, which makes recommendation systems a crucial part of human life. In particular, the Point-Of-Interest (POI) recommendation system has been applied to many real-life scenarios, such as life services and autonomous driving. Specifically, the goal of POI recommendation is to recommend locations that match their personalized preferences to users. In existing POI recommendation methods, people tend to pay more attention to the impact of temporal and spatial factors of POI on users, which will alleviate the problems of data sparsity and cold start in POI recommendation. However, this tends to ignore the differences among individual users, and considering only temporal and spatial attributes does not support fine-grained POI recommendations. To solve this problem, we propose a new Fine-grained POI Recommendation With Multi-Graph Convolutional Network (FP-MGCN). This model focuses on the content representation of POIs, captures users’ personalized preferences using semantic information from user comments, and learns fine-grained representations of users and POIs through the relationships between content–content, content–POI, and POI–user. FP-MGCN employs multiple embedded propagation layers and adopts information propagation mechanisms to model the higher-order connections of different POI-related relations for enhanced representation. Fine-grained POI is finally recommended to users through the three types of propagation we designed: content–content information propagation, content–POI information propagation, and POI–user information propagation. We have conducted detailed experiments on two datasets, and the results show that FP-MGCN has advanced performance and can alleviate the data sparsity problem in POI recommendation tasks.

Details

Title
Multi-Graph Convolutional Network for Fine-Grained and Personalized POI Recommendation
Author
Zhang, Suzhi 1 ; Bai, Zijian 1 ; Li, Pu 1 ; Chang, Yuanyuan 2 

 School of Software Engineering, Zhengzhou University of Light Industry, Zhengzhou 450000, China 
 School of Cyber Science and Engineering, Southeast University, Nanjing 210000, China 
First page
2966
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2716527331
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.