Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Silkiness is an extremely important attribute in high-end chocolate, and tribology is one of the commonly used methods of evaluating certain properties of the relevant food. In this study, based on three commercial chocolates of the same brand, the silky sensation was assessed by means of the professional sensation evaluation method. Artificial saliva was employed to obtain the mixed solutions with different chocolates, and their viscosity and coefficient of friction (CoF) were measured under different test parameters. The correlation of chocolate silkiness with the viscosities and average CoFs (aCoFs) are later discussed. The results showed that the silkiness of the three chocolates were negatively correlated with cocoa concentration and weakly correlated with viscosity. As the chocolate percentage decreased, the aCoF of the mixed solutions decreased, but the aCoF of the mixed solutions increased in relation to the cocoa concentration. In combination with the correlation coefficient of chocolate silkiness with the aCoFs, it was considered that 75% chocolate solutions using the Two-PDMS pair could be representative of the silkiness characteristic in oral processing at suitable operated parameters. The study results provide an insight into the rapid evaluation and development of similar attributes of high-end food.

Details

Title
Influence of Test Parameters on the Evaluation of Chocolate Silkiness Using the Tribological Method
Author
Ni, Zifeng 1 ; Qian, Shanhua 2   VIAFID ORCID Logo  ; Cheng, Shuai 1 ; Wang, Liang 1 ; Xu, Feifei 3 

 School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China 
 School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi 214122, China 
 School of Food Science, Jiangnan University, Wuxi 214122, China 
First page
217
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20754442
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2716550039
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.