Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Human milk contains bioactive components that provide protection against viral infections in early life. In particular, intestinal epithelial cells (IEC) have key regulatory roles in the prevention of enteric viral infections. Here we established an in vitro model to study the modulation of host responses against enteric viruses mimicked by poly I:C (pIC). The effects of 2′-fucosyllactose (2′FL), abundantly present in human milk, were studied on IEC and/or innate immune cells, and the subsequent functional response of the adaptive immune cells. IEC were pre-incubated with 2′FL and stimulated with naked or Lyovec™-complexed pIC (LV-pIC). Additionally, monocyte-derived dendritic cells (moDC) alone or in co-culture with IEC were stimulated with LV-pIC. Then, conditioned-moDC were co-cultured with naïve CD4+ T helper (Th)-cells. IEC stimulation with naked or LV-pIC promoted pro-inflammatory IL-8, CCL20, GROα and CXCL10 cytokine secretion. However, only exposure to LV-pIC additionally induced IFNβ, IFNλ1 and CCL5 secretion. Pre-incubation with 2′FL further increased pIC induced CCL20 secretion and LV-pIC induced CXCL10 secretion. LV-pIC-exposed IEC/moDC and moDC cultures showed increased secretion of IL-8, GROα, IFNλ1 and CXCL10, and in the presence of 2′FL galectin-4 and -9 were increased. The LV-pIC-exposed moDC showed a more pronounced secretion of CCL20, CXCL10 and CCL5. The moDC from IEC/moDC cultures did not drive T-cell development in moDC/T-cell cultures, while moDC directly exposed to LV-pIC secreted Th1 driving IL-12p70 and promoted IFNγ secretion by Th-cells. Hereby, a novel intestinal model was established to study mucosal host-defense upon a viral trigger. IEC may support intestinal homeostasis, regulating local viral defense which may be modulated by 2′FL. These results provide insights regarding the protective capacity of human milk components in early life.

Details

Title
Human Milk Oligosaccharide 2′-Fucosyllactose Modulates Local Viral Immune Defense by Supporting the Regulatory Functions of Intestinal Epithelial and Immune Cells
Author
Ayechu-Muruzabal, Veronica 1   VIAFID ORCID Logo  ; Poelmann, Bente 1 ; Berends, Alinda J 1 ; Kettelarij, Nienke 2 ; Garssen, Johan 3   VIAFID ORCID Logo  ; Belinda van’t Land 4   VIAFID ORCID Logo  ; Willemsen, Linette E M 1   VIAFID ORCID Logo 

 Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands 
 Danone Nutricia Research, 3584 CT Utrecht, The Netherlands 
 Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands; Danone Nutricia Research, 3584 CT Utrecht, The Netherlands 
 Danone Nutricia Research, 3584 CT Utrecht, The Netherlands; Center for Translational Immunology, The Wilhelmina Children’s Hospital, University Medical Center Utrecht, 3584 EA Utrecht, The Netherlands 
First page
10958
Publication year
2022
Publication date
2022
Publisher
MDPI AG
ISSN
16616596
e-ISSN
14220067
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2716556661
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.