Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Carotenoids are crucial photosynthetic pigments utilized for light harvesting, energy transfer, and photoprotection. Although most of the enzymes involved in carotenoid biosynthesis in chlorophototrophs are known, some are yet to be identified or fully characterized in certain organisms. A recently characterized enzyme in oxygenic phototrophs is 15-cis-zeta(ζ)-carotene isomerase (Z-ISO), which catalyzes the cis-to-trans isomerization of the central 15–15′ cis double bond in 9,15,9′-tri-cis-ζ-carotene to produce 9,9′-di-cis-ζ-carotene during the four-step conversion of phytoene to lycopene. Z-ISO is a heme B-containing enzyme best studied in angiosperms. Homologs of Z-ISO are present in organisms that use the multi-enzyme poly-cis phytoene desaturation pathway, including algae and cyanobacteria, but appear to be absent in green bacteria. Here we confirm the identity of Z-ISO in the model unicellular cyanobacterium Synechocystis sp. PCC 6803 by showing that the protein encoded by the slr1599 open reading frame has ζ-carotene isomerase activity when produced in Escherichia coli. A Synechocystis Δslr1599 mutant synthesizes a normal quota of carotenoids when grown under illumination, where the photolabile 15–15′ cis double bond of 9,15,9′-tri-cis-ζ-carotene is isomerized by light, but accumulates this intermediate and fails to produce ‘mature’ carotenoid species during light-activated heterotrophic growth, demonstrating the requirement of Z-ISO for carotenoid biosynthesis during periods of darkness. In the absence of a structure of Z-ISO, we analyze AlphaFold models of the Synechocystis, Zea mays (maize), and Arabidopsis thaliana enzymes, identifying putative protein ligands for the heme B cofactor and the substrate-binding site.

Details

Title
Zeta-Carotene Isomerase (Z-ISO) Is Required for Light-Independent Carotenoid Biosynthesis in the Cyanobacterium Synechocystis sp. PCC 6803
Author
Proctor, Matthew S 1 ; Morey-Burrows, Felix S 1 ; Canniffe, Daniel P 2 ; Martin, Elizabeth C 1 ; Swainsbury, David J K 3   VIAFID ORCID Logo  ; Johnson, Matthew P 1 ; Hunter, C Neil 1 ; Sutherland, George A 1   VIAFID ORCID Logo  ; Hitchcock, Andrew 1   VIAFID ORCID Logo 

 School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK 
 Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool L69 7BE, UK 
 School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK; School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK 
First page
1730
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20762607
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2716574876
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.