Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this work, the variant selection of martensite in a stainless maraging steel was investigated by electron backscattering diffraction and a new protocol of parent phase reconstruction. The reconstruction protocol enables digital austenite reversion into prior austenite microstructure and provides information of variant selection from a large number of austenite grains. It was found that strong variant selection occurred when the prior austenite grains were significantly refined in annealing or severely deformed by ausforming. When the prior austenite grain size was finer than 20 μm, it was found that a pair of twinned variants dominated in one packet, which dominates the prior austenite grain. This finding is explained by the inefficient space left by the early transformed martensite in the dominant packet. In contrast, variants with the same Bain orientation occupied most of the space of the austenite when the strain of the austenite exceeded 50%. The accumulated microbands on the 1 1 1 plane acted as nucleation sites of specific variants of martensite. This work provides statistical results to revisit the variant selection of martensitic transformation with the assistance of computational crystallography.

Details

Title
Digital Reconstruction of Engineered Austenite: Revisiting Effects of Grain Size and Ausforming on Variant Selection of Martensite
Author
Cheng-Yao, Huang; Shao-Lun, Lu; Hung-Wei, Yen
First page
1511
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20754701
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2716574878
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.