Full text

Turn on search term navigation

© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The rapid conversion of conventional powertrain technologies to climate-neutral new energy vehicles requires the ramping of electrification. The popularity of fuel cell electric vehicles with improved fuel economy has raised great attention for many years. Their use of green hydrogen is proposed to be a promising clean way to fill the energy gap and maintain a zero-emission ecosystem. Their complex architecture is influenced by complex multiphysics interactions, driving patterns, and environmental conditions that put a multitude of power requirements and boundary conditions around the vehicle subsystems, including the fuel cell system, the electric motor, battery, and the vehicle itself. Understanding its optimal fuel economy requires a systematic assessment of these interactions. Artificial intelligence-based machine learning methods have been emerging technologies showing great potential for accelerated data analysis and aid in a thorough understanding of complex systems. The present study investigates the fuel economy peaks during an NEDC in fuel cell electric vehicles. An innovative approach combining traditional multiphysics analyses, design of experiments, and machine learning is an effective blend for accelerated data supply and analysis that accurately predicts the fuel consumption peaks in fuel cell electric vehicles. The trained and validated models show very accurate results with less than 1% error.

Details

Title
Artificial Intelligence-Based Machine Learning toward the Solution of Climate-Friendly Hydrogen Fuel Cell Electric Vehicles
Author
Peksen, Murphy M
First page
663
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
26248921
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2716576671
Copyright
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.