Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Tidal wetland ecosystems and their vegetation communities are broadly controlled by tidal range and inundation frequency. Sea-level rise combined with episodic flooding events are causing shifts in thresholds of vegetation species which reconstructs the plant zonation of the coastal landscape. More frequent inundation events in the upland forest are causing the forest to convert into tidal marshes, and what is left behind are swaths of dead-standing trees along the marsh–forest boundary. Upland forest dieback has been well documented in the mid-Atlantic; however, reliable methods to accurately identify this dieback over large scales are still being developed. Here, we use multitemporal Lidar and imagery from the National Agricultural Imagery Program to classify areas of forest loss in the coastal regions of Delaware. We found that 1197 ± 405 hectares of forest transitioned to non-forest over nine years, and these losses were likely driven by major coastal storms and severe drought during the study period. In addition, we report decreases in Lidar-derived canopy height in forest loss areas, suggesting forest structure changes associated with the conversion from forest to marsh. Our results highlight the potential value of integrating Lidar-derived metrics to determine specific forest characteristics that may help predict future marsh migration pathways.

Details

Title
Lidar-Imagery Fusion Reveals Rapid Coastal Forest Loss in Delaware Bay Consistent with Marsh Migration
Author
Powell, Elisabeth B 1 ; St Laurent, Kari A 2 ; Dubayah, Ralph 1   VIAFID ORCID Logo 

 Geographic Sciences Department, University of Maryland, 2181 LeFrak Hall, College Park, MD 20742, USA 
 Delaware Department of Natural Resources and Environmental Control, Delaware National Estuarine Research Reserve, Dover, DE 19734, USA 
First page
4577
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2716604720
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.