Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The Hiendelaencina district in Spain was the most important silver producer in Europe during 1844–1925. At the end of the 20th century, with mines having closed, some waste rock dumps were reprocessed, and the sludge from the flotation process was stored in two tailings ponds. When this activity ceased, the residues began to be eroded and disperse. In this study, the state of degradation of both deposits was evaluated using historical mapping and light detection and ranging (LiDAR) data, incorporated into a Geographic Information System. In the aerial images (1946–2018), mine tailings and their main erosive and sedimentary forms were mapped. Geoforms linked to hydrological (channels, gullies, alluvial cones), wind (eolian mantles), hydric–gravitational (colluvium) and anthropic (motorbike tracks) processes which move sludge into the surrounding areas were identified. A net loss of 8849 m3 of sludge, a release of 10.3 t of potentially polluting substances and a high erosion rate of 346 t/ha*year were calculated based on LiDAR data from 2009 and 2014. The ponds show a current high degree of erosion that could increase due to both human activity and the growing frequency of drought and torrential rain periods if stabilization measures are not undertaken.

Details

Title
Geomorphological Mapping and Erosion of Abandoned Tailings in the Hiendelaencina Mining District (Spain) from Aerial Imagery and LiDAR Data
Author
Martín-Velázquez, Silvia 1   VIAFID ORCID Logo  ; Rodríguez-Santalla, Inmaculada 1   VIAFID ORCID Logo  ; Ropero-Szymañska, Nikoletta 2 ; Gomez-Ortiz, David 1   VIAFID ORCID Logo  ; Martín-Crespo, Tomás 1   VIAFID ORCID Logo  ; Cristina de Ignacio-San José 3 

 Departamento de Biología, Geología, Física y Química Inorgánica, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Madrid, Spain; Research Group in Environmental Geophysics and Geochemistry, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Madrid, Spain 
 Departamento de Biología, Geología, Física y Química Inorgánica, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Madrid, Spain 
 Departamento de Mineralogía y Petrología, Facultad de Ciencias Geológicas, Universidad Complutense de Madrid, C/José Antonio Novais, 12, 28040 Madrid, Madrid, Spain 
First page
4617
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2716606050
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.