Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

As natural disasters become extensive, due to various environmental problems, such as the global warming, it is difficult for the disaster management systems to rapidly provide disaster prediction services, due to complex natural phenomena. Digital twins can effectively provide the services using high-fidelity disaster models and real-time observational data with distributed computing schemes. However, the previous schemes take little account of the correlations between environmental data of disasters, such as landscapes and weather. This causes inaccurate computing load predictions resulting in unbalanced load partitioning, which increases the prediction service times of the disaster management agencies. In this paper, we propose a novel distributed computing framework to accelerate the prediction services through semantic analyses of correlations between the environmental data. The framework combines the data into disaster semantic data to represent the initial disaster states, such as the sizes of wildfire burn scars and fuel models. With the semantic data, the framework predicts computing loads using the convolutional neural network-based algorithm, partitions the simulation model into balanced sub-models, and allocates the sub-models into distributed computing nodes. As a result, the proposal shows up to 38.5% of the prediction time decreases, compared to the previous schemes.

Details

Title
A Semantic Data-Based Distributed Computing Framework to Accelerate Digital Twin Services for Large-Scale Disasters
Author
Jin-Woo, Kwon  VIAFID ORCID Logo  ; Seong-Jin, Yun  VIAFID ORCID Logo  ; Won-Tae, Kim  VIAFID ORCID Logo 
First page
6749
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2716608322
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.