Abstract

Reducing the thickness of a material to its two-dimensional (2D) limit can have dramatic consequences for its collective electronic states, including magnetism, superconductivity, and charge and spin ordering. An extreme case is TiTe2, where a charge density wave (CDW) emerges in the single-layer, which is absent for the bulk compound, and whose origin is still poorly understood. Here, we investigate the electronic band structure evolution across this CDW transition using temperature-dependent angle-resolved photoemission spectroscopy. Our study reveals an orbital-selective band hybridisation between the backfolded conduction and valence bands occurring at the CDW phase transition, which in turn leads to a significant electronic energy gain, underpinning the CDW transition. For the bulk compound, we show how this energy gain is almost completely suppressed due to the three-dimensionality of the electronic band structure, including via a kz-dependent band inversion which switches the orbital character of the valence states. Our study thus sheds new light on how control of the electronic dimensionality can be used to trigger the emergence of new collective states in 2D materials.

Details

Title
Orbital-selective band hybridisation at the charge density wave transition in monolayer TiTe2
Author
Antonelli, Tommaso 1   VIAFID ORCID Logo  ; Rahim, Warda 2 ; Watson, Matthew D. 3   VIAFID ORCID Logo  ; Rajan, Akhil 1 ; Clark, Oliver J. 1   VIAFID ORCID Logo  ; Danilenko, Alisa 4   VIAFID ORCID Logo  ; Underwood, Kaycee 1 ; Marković, Igor 5 ; Abarca-Morales, Edgar 6 ; Kavanagh, Seán R. 7   VIAFID ORCID Logo  ; Le Fèvre, P. 8 ; Bertran, F. 8   VIAFID ORCID Logo  ; Rossnagel, K. 9   VIAFID ORCID Logo  ; Scanlon, David O. 2   VIAFID ORCID Logo  ; King, Phil D. C. 1   VIAFID ORCID Logo 

 University of St Andrews, SUPA, School of Physics and Astronomy, St Andrews, UK (GRID:grid.11914.3c) (ISNI:0000 0001 0721 1626) 
 University College London, Department of Chemistry and Thomas Young Centre, London, UK (GRID:grid.83440.3b) (ISNI:0000000121901201) 
 University of St Andrews, SUPA, School of Physics and Astronomy, St Andrews, UK (GRID:grid.11914.3c) (ISNI:0000 0001 0721 1626); Diamond Light Source, Didcot, UK (GRID:grid.18785.33) (ISNI:0000 0004 1764 0696) 
 University of St Andrews, SUPA, School of Physics and Astronomy, St Andrews, UK (GRID:grid.11914.3c) (ISNI:0000 0001 0721 1626); University of Copenhagen, Center for Quantum Devices, Niels Bohr Institute, Copenhagen, Denmark (GRID:grid.5254.6) (ISNI:0000 0001 0674 042X) 
 University of St Andrews, SUPA, School of Physics and Astronomy, St Andrews, UK (GRID:grid.11914.3c) (ISNI:0000 0001 0721 1626); Max Planck Institute for Chemical Physics of Solids, Dresden, Germany (GRID:grid.419507.e) (ISNI:0000 0004 0491 351X); University of British Columbia, Stewart Blusson Quantum Matter Institute, Vancouver, Canada (GRID:grid.17091.3e) (ISNI:0000 0001 2288 9830) 
 University of St Andrews, SUPA, School of Physics and Astronomy, St Andrews, UK (GRID:grid.11914.3c) (ISNI:0000 0001 0721 1626); Max Planck Institute for Chemical Physics of Solids, Dresden, Germany (GRID:grid.419507.e) (ISNI:0000 0004 0491 351X) 
 University College London, Department of Chemistry and Thomas Young Centre, London, UK (GRID:grid.83440.3b) (ISNI:0000000121901201); Imperial College London, Department of Materials and Thomas Young Centre, London, UK (GRID:grid.7445.2) (ISNI:0000 0001 2113 8111) 
 CNRS-CEA, L’Orme des Merisiers, Synchrotron SOLEIL, Gif-sur-Yvette, France (GRID:grid.426328.9) 
 Christian-Albrechts-Universität zu Kiel, Institut für Experimentelle und Angewandte Physik, Kiel, Germany (GRID:grid.9764.c) (ISNI:0000 0001 2153 9986); Deutsches Elektronen-Synchrotron DESY, Ruprecht Haensel Laboratory, Hamburg, Germany (GRID:grid.7683.a) (ISNI:0000 0004 0492 0453) 
Publication year
2022
Publication date
2022
Publisher
Nature Publishing Group
e-ISSN
23974648
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2718493884
Copyright
© The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.