It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Growing set of optimization and regression techniques, based upon sparse representations of signals, to build models from data sets has received widespread attention recently with the advent of compressed sensing. This paper deals with the parameterization of the Lorenz-96 (Lorenz, 1995) model with two time-scales that mimics mid-latitude atmospheric dynamics with microscopic convective processes. Compressed sensing is used to build models (vector fields) to emulate the behavior of the fine-scale process, so that explicit simulations become an online benchmark for parameterization. We apply compressed sensing, where the sparse recovery is achieved by constructing a sensing/dictionary matrix from ergodic samples generated by the Lorenz-96 atmospheric model, to parameterize the unresolved variables in terms of resolved variables. Stochastic parameterization is achieved by auto-regressive modelling of noise. We utilize the ensemble Kalman filter for data assimilation, where observations (direct measurements) are assimilated in the low-dimensional stochastic parameterized model to provide predictions. Finally, we compare the predictions of compressed sensing and Wilks’ polynomial regression to demonstrate the potential effectiveness of the proposed methodology.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer