Full Text

Turn on search term navigation

This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background and aims

We hypothesized that a drug’s clinical signature (or phenotype) of liver injury can be assessed and used to quantitatively develop a computer-assisted DILI causality assessment-tool (DILI-CAT). Therefore, we evaluated drug-specific DILI-phenotypes for amoxicillin-clavulanate (AMX/CLA), cefazolin, cyproterone, and Polygonum multiflorum using data from published case series, to develop DILI-CAT scores for each drug.

Methods

Drug specific phenotypes were made up of the following three clinical features: (1) latency, (2) R-value, and (3) AST/ALT ratio. A point allocation system was developed with points allocated depending on the variance from the norm (or “core”) for the 3 variables in published datasets.

Results

The four drugs had significantly different phenotypes based on latency, R-value, and AST/ALT ratio. The median cyproterone latency was 150 days versus < 43 days for the other three drugs (median: 26 for AMX/CLA, 20 for cefazolin, and 20 for Polygonum multiflorum; p<0.001). The R-value for the four drugs was also significantly different among drugs (cyproterone [median 12.4] and Polygonum multiflorum [median 10.9]) from AMX/CLA [median 1.44] and cefazolin [median 1.57; p<0.001]). DILI-CAT scores effectively separated cyproterone and Polygonum multiflorum from AMX/CLA and cefazolin, respectively (p<0.001). As expected, because of phenotypic overlap, AMX/CLA and cefazolin could not be well differentiated.

Conclusions

DILI-CAT is a data-driven, diagnostic tool built to define drug-specific phenotypes for DILI adjudication. The data provide proof of principle that a drug-specific, data-driven causality assessment tool can be developed for different drugs and raise the possibility that such a process could enhance causality assessment methods.

Details

Title
A novel quantitative computer-assisted drug-induced liver injury causality assessment tool (DILI-CAT)
Author
Tillmann, Hans L  VIAFID ORCID Logo  ; Suzuki, Ayako; Merz, Michael; Hermann, Richard; Rockey, Don C
First page
e0271304
Section
Research Article
Publication year
2022
Publication date
Sep 2022
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2719396982
Copyright
This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.