It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The rapid development of science and technology has been accompanied by an exponential growth in peer-reviewed scientific publications. At the same time, the review of each paper is a laborious process that must be carried out by subject matter experts. Thus, providing high-quality reviews of this growing number of papers is a significant challenge. In this work, we ask the question “can we automate scientific reviewing? ”, discussing the possibility of using natural language processing (NLP) models to generate peer reviews for scientific papers. Because it is non-trivial to define what a “good” review is in the first place, we first discuss possible evaluation metrics that could be used to judge success in this task. We then focus on the machine learning domain and collect a dataset of papers in the domain, annotate them with different aspects of content covered in each review, and train targeted summarization models that take in papers as input and generate reviews as output. Comprehensive experimental results on the test set show that while system-generated reviews are comprehensive, touching upon more aspects of the paper than human-written reviews, the generated texts are less constructive and less factual than human-written reviews for all aspects except the explanation of the core ideas of the papers, which are largely factually correct. Given these results, we pose eight challenges in the pursuit of a good review generation system together with potential solutions, which, hopefully, will inspire more future research in this direction.
We make relevant resource publicly available for use by future research: https://github. com/neulab/ReviewAdvisor. In addition, while our conclusion is that the technology is not yet ready for use in high-stakes review settings we provide a system demo, ReviewAdvisor (http://review.nlpedia.ai/), showing the current capabilities and failings of state-of-the-art NLP models at this task (see demo screenshot in A.2). A review of this paper written by the system proposed in this paper can be found in A.1.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer





